
AD- 4156 647 ITHOOS FOR DESIGNING SOFTWARE TO FIT HUIAN NEEDS AND I/I
CAPABILITIES: PROC|.. (U NATIONAL RESEARCH COUNCIL
VASHINGTON OC COITTEE ON HUAN FA..

UNCLASSIFIED N S ANDERSON IT AL. AY BS N0OI44-15--0013 FIG 92 NILII.l *rI,' I
~flflllI

ALI

94,

11125 JlI4

N NAS
R NAF

Methods for
Designing Software
to Fit Human Needs
and Capabilities

Proceedings of the Workshop
on Software Human Factors

Methods for
Designing Software
to Fit Human Nees
and Capabilities
Proceedings of the Workshop.
on Software Human Factors

Nancy S. Anderson and Judith Reitman Olson, Editors

Committee on Human Factors
Commission on Behavioral and Social Sciences and Education
Nationil Research Council

NATIONAL ACADEMY PRESS Distribution/
Washington, D.C. 195Avalability Codes

DTIC

JUL 17M OTIC,

NOTICE: The project that is the subject of this report was

approved by the Governing Board of the National Research
Council, whose members are drawn from the councils of the

National Academy of Sciences, the National Academy of
Engineering, and the Institute of Medicine. The members of the
comittee responsible for the report were chosen for their
special competences and with regard for appropriate balance.

This report has been reviewed by a group other than the authors
according to procedures approved by a Report Review Committee
consisting of members of the national Academy of Sciences, the
National Academy of Engineering, and the Institute of Medicine.

The National Research Council was established by the National
Academy of Sciences in 1916 to associate the broad community of

science and technology with the Academy's purposes of furthering
knowledge and of advising the federal government. The Council
operates in accordance with general policies determined by the
Academy under the authority of its congressional charter of
1863, which establishes the Academy as a private, nonprofit,
self-governing membership corporation. The Council has become
the principal operating agency of both the National Academy of
Sciences and the National Academy of Engineering in the conduct
of their services to the government, the public, and the
scientific and engineering communities. It is administered

jointly by both Academies and the Institute of Medicine. The
National Academy of Engineering and the Institute of Medicine
were established in 1964 and 1970, respectively, under the

-, charter of the National Academy of Sciences.

The Comittee on Human Fa/tors in the Comission on Behavioral
and Social Sciences and Education Aa sponsored jointly by the
Air Force Office of Scientific Research, the Army Research
Institute for the Behavioral and Social Sciences, the Office of
Naval Research, the National Aeronautics and Space
Administration, and the National Science Foundation. -

This work relates to Department of the Navy Grant No.
N00014-S5-G-0093 issued by the Office of Naval Research under
Contract Authority NR 196-167. However, the content does not
necessarily reflect the position or the policy of the
government, and no official endorsement should be inferred.

The United States government has at least a royalty-free,
nonexclusive and irrevocable license throughout the world for
government purposes to publish, translate, reproduce, deliver,
perform, dispose of, and to authorise others so to do, all or
any portion of this work.

Available fru C on Humanu tors, Na anal oe

,oS

_ _ _ _ _ _ _ _

WORKSHOP ON SOFTWARE HUMAN FACTORS

NANCY S. ANDERSON (Chair), Department of Psychology,

University of Maryland
ELIZABETH K. BAILEY, Software Metrics, Inc., Falls

Church, Va.
STUART L. CARD, Xerox Palo Alto Research Center, Palo

Alto, Calif.
JOHN M. CARROLL, Watson Research Center, IBM Corporation,

Yorktown Heights, N.Y.
ALPHONSE CHAPANIS, Industrial and Human Factors

Consulting Services, Baltimore, Md.

H. REX HARTSON, Department of Computer Science, Virginia
*Polytechnic Institute and State University

DAVID R. LENOROVITZ, Computer Technology Associates, Inc,
Englewood, Colo.

MARILYN M. MANTEI, Graduate School of Business
Administration, University of Michigan

JUDITH REITMAN OLSON, Graduate School of Business

Administration, University of Michigan

RICHARD W. PEN, Bolt Beranek and Newman Laboratories,
Inc., Cambridge, Mass.

PHYLLIS REISNER, IBM Research, San Jose, Calif.
JANET WALKER, Symbolics, Inc., Cambridge, Mass.
JOHN A. WHITESIDE, Digital Equipment Corporation,

Maynard, Mass.
ROBERT C. WILLIGES, Department of Industrial Engineering

and Operations Research, Virginia Polytechnic

Institute and State University

iii

.. ~ Q

COMMITTEE ON HUMAN FACTORS

THOMAS B. SHERIDAN (Chair), Mechanical Engineering and
Applied Psychology, Massachusetts Institute of
Technology

NANCY S. ANDERSON, Department of Psychology, University
of Maryland

ALPHONSE CHAPANIS, Industrial and Human Factors
Consulting Services, Baltimore, Md.

JEROME ELKIND, Systems Development, Xerox Corporation,
Palo Alto, Calif.

BARUCH FISCHHOFF, Decision Research (a branch of
Perceptronics, Inc.), Eugene, Ore.

OSCAR GRUSKY, Department of Sociology, University of
California, Los Angeles

ROBERT M. GUION, Department of Psychology, Bowling Green
State University

JULIAN HOCHBERG, Department of Psychology, Columbia
University

K.H. EBERHARD KROEMER, Ergonopics Laboratory, Virginia
Polytechnic Institute and State University

THOMAS K. LANDAUER, Bell Communications Research,

Morristown, N.J.
JUDITH REITMAN OLSON, Graduate School of Business

Administration, University of Michigan
RICHARD M. PEW, Bolt Beranek and Newman Laboratories,

Inc., Cambridge, Mass.

STOVER H. SNOOK, Ergonomics Laboratory, Liberty Mutual
Research Center, Hopkinton, Mass.

ROBERT C. WILLIGES, Department of Industrial Engineering
and Operations Research, Virginia Polytechnic
Institute and State University

STANLEY DEUTSCH, Study Director
AN M. SPRAGUE, Administrative Secretary

v

4' I"; ~ ~ ~~~ ~~ 0m,000nn, k mmu m Il iiii

CONTENTS

FOREWORD ix

PREFACE xi

INTRODUCTION

The Need for New Methods, 2
The Product Development Cycle, 3

H MDAN FACTORS METHODS IN RESEARCH AND PRODUCT DESIGN 4

Analysis: Gathering Ideas, 4
Design: The Initial Design, 6

Formal Analysis of the Initial Design, 10
Building a Prototype, 11
Prototype Testing with Users, 12
Redesign, 16

Implementation: Monitoring Continued Performance, 16

OTHER METHODS 18

ADVANCES AND SUCCESSES 21

FUTURE METHODS 22

CONMCLUSION 25

REERENCES 26

vii

dw/

mI

44

FOREWORD

The Committee on Human Factors was established in October
1980 by the Commission on Behavioral and Social Sciences
and Education of the National Research Council. It is
sponsored by the Office of Naval Research, the Air Force
Office of Scientific Research, the Army Research Institute
for the Behavioral and Social Sciences, the National
Aeronautics and Space Administration, and the National
Science Foundation. The principal objectives of the
committee are to provide new perspectives on theoretical
and methodological issues, identify basic research needed
to expand and strengthen the scientific basis of human
factors, and to attract scientists both inside and
outsidheom field to perform needed research. The goal
of the committee is to provide the solid foundation of
research as a base on which effective human factors
practices can build.

Human factors issues arise in every domain in which
humans interact with the products of a technological
society. In order for the committee to perform its role
effectively, it draws on experts from a wide range of
scientific and engineering disciplines. The committee
includes specialists in the fields of psychology,
engineering, biomechanics, cognitive sciences, machine
intelligence, computer sciences, sociology, and human
factors engineering. Other disciplines participate in
the working groups, workshops, and symposia organized by
the committee. Each of these disciplines contributes to
the basic data, theory, and methods required to improve
the scientific basis of human factors.

ix_
iq-

PREFACE

Computers are pervasive in civilian and military
equipment systems. The compatibility of computer-based
devices and human users is predominantly dependent on thecharacteristics of the software. The term software
human factors refers to the process of designing
software to be effective for human use, i.e., easy to
learn and use, productive, and efficient. However, no
specific efforts have been made to operationally define
the objectives of software human factorsp-anecessary
step both to focus research goals and to provide a -

framework for development of general application
principles.

While a large amount of research has been performed on
software features related to ease of use or user compat-
ibility, most of these studies have been limited to a fewfeatures investigated in a specific context. Conse-
quently, results from different studies cannot be inte-
grated, and it is hard to draw conclusions that can begeneralized to other situations. Overriding problems in
the development of principles of software human factors
are the lack of knowledge of how research on software
human factors should be conducted and a paucity of tech-niques for measuring performance. For example, little is
known about how to collect user data on "ease of
learning," how to define errors, how to record complex
response-time metrics, and how to measure user
satisfaction.

Researchers interested in the development of principles
for the design of user-compatible software have great
need for guidance in both research methods and performance
measurement techniques. As an initial effort to fulfillthis need, the comuittee conducted a two-day workshop to
bring together highly qualified researchers with knowledge

xi

MO-

qrI

II

about how to design software to be usable based on

studies in diverse fields.
. .-The Workshop on Software Human Factors was convened in

June 1983 in Washington, D.C. T'heimpetus.-for the
.khop grew aireudy W d -toe-o

r"uar~h AnA prartj.v.g in h~ ur!~itrcinin
thO-4ei3tLte l;8 - reet4ais ao Iooefo n

-- jactus;. The workshop had three goals:

o To identify current methods used to design and

evaluate human factors aspects of software,
including overall design and methods for collecting

data on user performance;
o To ascertain what we know from software research

results that we did not know 10 years ago; and
o To identify new research methods that are needed,

both to develop design principles for software and
to discover how users understand software systems.

A group of 14 nationally recognized, active researchers ,

in the field of human-computer interaction from both
industry and academia were invited to participate in the
workshop. These workshop members represented a variety

of pertinent disciplines, including human factors, cogni-
tive psychology, computer science, experimental psychol-

ogy, social psychology, and business administration. The
relevant bodies of knowledge represented by the partici-

pants include experimental design and data analysis, human
performance measurement, software design, information
processing, learning, and attitude assessment. Prior to
the workshop, participants prepared short, informal posi-
tion papers on the issues for distribution. To accomplish
the goal of collecting the desired knowledge about the
design of software, the group spent two days listing both
design and evaluation methods currently in use for the
product development of good software and relevant research
methods for understanding basic issues in user-software
interaction; describing each method and constructing a
list of references in which these methods are used;
categorizing methods according to their uses in various
stages of software product development or in more basic
research; and suggesting new methods and techniques,
designating their possible uses, and indicating which
appear to have high near-term payoff.

The technical aspects of the workshop were organized
by comittee mesbers Nancy S. Anderson and Alphonse
Chapanis. The meeting was chaired by Nancy Anderson.

xii

__

The report that follows, edited by Nancy Anderson and
Judith Reitman Olson, is based on discussions from the
workshop and written materials and references contributed
by the participants during and subsequent to the workshop.
Special appreciation is extended to Robert T. Hennessy
and M. Jeanne Richards, formerly of the committee staff,
for their contributions in making the sessions productive
and pleasanty to Stanley Deutsch, study director of the
comittee, for his contributions to the organization and
preparation of the report; to Christine McShane, of the
Comission staff, for editorial support; and to Anne
Sprague, administrative secretary, for secretarial and
administrative support. They all helped to usher this
report to publication.

Nancy S. Anderson, Chair
Workshop on Software Human Factors

xiii

I ll l II I

INTRODUCTION

At present, software for specific applications and
user-computer interfaces are aggressively developed in
industry, but they are designed largely with only the
designer's intuition as guide and often without empirical
testing with end users. Two observations made in a
popular software magazine point out the resulting problem:

The computer systems and software we have today
are too damn complicated for the end user. There
is too much to learn, too many fiddly details, too
much jargon, too much said that shouldn't be and
not enough said that should be . . . (A.
Johnson-Laird, Software News, April 1982).

Data processing still has one ongoing problem to

solve: the end user's dissatisfaction with
today's systems. The entire industry has been
grappling with this problem of ergonomics, or the
interface between human and machine. In the case
of data processing, ergonomics involves the
development of "user-friendly" systems which can
be operated by the user at the terminal and which
generate results that the user can understand and
utilize (M. Parks, Software News, February 1983).

Because of such difficulties, some industry and
academic research groups are developing an interest in
gathering and building appropriate guidelines from basic
research and incorporating these guidelines and observa-
tions of users' behavior into the design process. A new
field has emerged called software psychology or the
psychology of human-computer interaction. It is in a
very exciting state--a relatively new amalgam of

1 -f

2

experimental/cognitive psychology, computer science,
business, and engineering.

The field is growing in a variety of sectors. There
are more human factors groups in industry than ever
before. Approximately 50 universities in this country
and abroad have PhD programs in human-computer inter-
action, which are housed in psychology, computer science,
social sciences, engineering, business, and English
departments (Mantei and Smelcer, 1984). Many more schools

offer one or more courses in the area. The Association
for Computing Machinery has a Special Interest Group for
Computer-Human Interaction (SIGCHI). The Human Factors
Society has a group called the Computer Systems Technical

Group, which is concerned with human factors aspects of
interactive computing systems, the data processing
environment, and software development. Consumer demand
for computers is increasing at a rapid pace, and many
schools are acquiring computers for tutoring and the
word-processing and mathematical tools that they provide.

The systems that sell are those that provide the right
usability and functionality--that provide the right

design for the end user.

THE NEED FOR NEW METHODS

Designing systems to fit the end user is a difficult
process. The field is searching for new methods.
Classical experimental designs (e.g., controlled
factorial designs) may not be appropriate for industrial
settings in which cost-effectiveness and timeliness are
major concerns. However, tests of single, intuition-
driven designs with users, measuring their performance
and satisfaction, do not advance our general knowledge
about designs and do not indicate why certain features
are good or bad.

There are, however, hybrid methods being used in

industry, and new, more complex laboratory tests being
constructed to assess users' performance in and under-
standing of complex systems. These methods are described
below, along with their advantages and disadvantages and
where they fit into the product development cycle. Each
method is annotated with references to a few key articles
that report its use.

i#

nn__g______lm m__nllln~nn n - d

3

THE PRODUCT DEVELOPMENT CYCLE

Software products are typically developed in three

general stages:

1. Analysis--the product's functionality and
initial hardware/software constraints are
determined, analysis is made of the product's
projected costs and benefits, and a
development schedule is projected.

2. Design--the product is designed, first at the
level of functional specifications and later
in complete detail, then coded and tested,
ending with a running system.

3. Implementation--the product is distributed and
installed in its final locations, and users
are trained and then operate the equipment.

At all three stages human factors considerations
appear:

1. In assessing users' needs and capabilities
during the analysis phase;

2. In designing and redesigning the system with
human factors principles of usability, and in
testing prototypes with end users during the
design stage; and

3. In monitoring use of the system after its
implementation, gathering information for
redesign to correct errors or to add new,
useful features.

In what follows the methods appropriate to each of
these stages are described. These methods, or their
variants, are useful for both laboratory research and
industry. They may be used in the slower, more con-
trolled environment of the laboratory, where research is
designed to study people's performance on complex tasks.
And they contribute equally to design and evaluation in
industry, where timeliness is frequently considered to be
more important than the ability to generalize from the
results.

n _. .

-.- __________ -mmm mm - __I_________ _lmlmm d &

HUMAN FACTORS METHODS IN RESEARCH AND PRODUCT DESIGN

ANALYSIS: GATHERING IDEAS

The ideas behind products typically arise from three
major sources: from the redesign of an existing product,
from an identified need in the marketplace, and from a
new technological capability that provides a useful new
function to users. Information about the success of
existing products can be obtained either by asking their
users for their opinions and uses of the systems or by
gathering unobtrusive data about their use. Information
about a new product can come from reports of needs from
potential users.

Reports from Users

Questionnaires and interviews are the most common
methods for gathering information about the success of a
product or the needs for new functions or a new product.
Both questionnaires and interviews are good methods for
eliciting information about how a person goes about his
or her work, what aids or tools he or she uses or desires,
what kind of knowledge or training is required to do the
work, what difficulties he or she reports about the work,
where the work originates and where it goes, what inter-
actions are necessary with other people to do the work,
and how the user thinks the work process could be
improved. Questionnaires are more rigid in format than
interviews, since interviews can go where the interviewee
leads, often uncovering unanticipated new information.
The principal disadvantage of interviews, however, is
that they are time-consumingi only one person can be
interrogated at a time. By aggregating information from

4

5

a number of interviewees or questionnaires, one can
construct a general picture of users' needs and construct
some tentative system concepts for helping the users do
their work tKelley and Chapanis, 19821 Rosson, 1983).

Diaries provide a similar form of informal data
gathering and are used to uncover the needs and capabil-
ities of the potential users of a new product. Data
about work can be gathered in detail over a long period
of time, especially about how much time particular kinds
of activities take and their sequential dependencies.
Because a shorter time elapses between the occurrence of
an event and its report, diaries give a more accurate
record of actual activity than retrospective reports in
questionnaires and interviews (Mantei and Haskell, 1983).

A common marketing technique for gathering information
about existing or potential users' needs is the focus
group. Instead of interviewing a single user at a time,
groups of users who are either similarly trained or who
share common goals are first told about some potential
capabilities of a system, then asked to discuss how they
might find uses for these capabilities. Occasionally
active brainstorming from these sessions generates very
good ideas. The same kind of method is used to collect
opinions about an existing product and to ask for sug-
gestions for improvements. Often designers will gather
expert users of a system and ask their opinion about how
to improve the system or how to design a new, computer-
based tool for aiding their work (Al-Awar et al., 1981).
The advantage of such methods is that the participants
stimulate each others' thoughts, uncovering ideas or
suggestions they may not have thought of individually.
That is also its disadvantage: a participant's true
opinions can be swayed by group pressure.

Inferring Needs from Natural Observation

One of the main drawbacks of the methods listed above
is that they rely on users' perceptions of their needs
and capabilities. Sometimes new products meet needs
unforeseen by their users; sometimes users, either

, consciously or unconsciously, distort their daily work
activities and feelings about existing working conditions.
In such cases, it may be better to collect information,
not by asking users, but by watching their behavior and
inferring their needs and capabilities from their

activities.

-fI

6

Two methods are often used to collect information
about users' behavior in natural work settings. In the
case of activity analysis, an observer watches and
records certain behaviors of the workers. The data may
be collected by direct observation or by analyzing video
or film recordings. Individual samples of categorized
activities are aggregated into activity frequency tables,
graphs, or state transition diagram. Such performance
analyses are particularly useful in assessing the changes
made in work by comparing activity before and after a new
system or design change is implemented (Hartley et al.,
1977; Hoecker and Pew, 1980).

Logging and metering techniques involve observations
of what a user does with a system, but the measurement is
embedded directly into the software. These procedures
can include a simple record with a time-stamp of every
interaction that a user makes with the computer, or it
can involve a complete hard copy representation of a
sequence of particular display frames. Powerful logging
and metering software can also categorize certain
recognizable events and summarize their times. For
example, one could summarize such events as time to
complete a task, user and/or system response time, and
frequencies and types of errors.

Logging and metering procedures are typically embedded
in the operational software. Where there are limits to
the access to such software, one can connect a second
computer in tandem to the first and direct data about the
user's activities to it, in essence providing a *passive
tap." In this way, logging does not interfere with system
response times, and information about the user inputs and
the system responses can be recorded in detail for future
use (see Whiteside et al., 19821 Goodwin, 1982).

DESIGN: THE INITIAL DESIGN

Designers go through two stages in constructing an
initial design, either implicitly, driven by intuition or
experience, or explicitly, using some or all of the
detailed tools described below. First, the designers
decide what the user is going to do, conducting an
informal or formal task analysis. Second, they specify
what the interface will look like and what the dialog
will consist of. There are a variety of methods that
apply to this stage, where designers use informal or

MEM

7

formal guidelines, consult end users, or have some
theory-based judgments to draw on.

Determining What the User Needs to Do

The most common form of analyzing the user's activities

is called a task analysis. Task analysis is the process
of analyzing the functional requirements of a system to
ascertain and describe the tasks that people perform. It
focuses both on how the system fits within the global task
the user is trying to perform (e.g., prepare a report of
a projected budget) and what the user has to do to use
the system (e.g., access the application program, access
the data files, etc.).

Task analysis has two major aspects: the first
specifies and describes the tasks, and the second, and
more important, analyzes the specified tasks to determine
such system or environmental characteristics as the
number of people needed, the skills and knowledge they
should have, and the training necessary. The first step
involves decomposition of tasks into their constitutent
subtasks and annotating each subtask for its essential
elements and their interdependencies. The second step
involves examination of the actual tasks and interdepen-
dencies, assessing how difficult each is, what knowledge
is required, where the information resides, etc. Results
of task analyses are used not only in writing functional
specifications for a particular application, but also for
assigning work to groups of workers, arranging equipment
in an efficient configuration, determining task demands
on people, and developing operating procedures and train-
ing manuals (see Bullen and Bennett, 1983; Bullen et al.,
1982).

Specifying the Initial Design

An initial system or interface design is constructed
next. With the global tasks the user has to perform
specified am above, the designer groups the subtasks
according to logical function from the perspective of the
user but tempered by system/hardware constraints. Then
the actual interface or system details cowe from three
souroes: design guidelines or principles, intuitions of
the designer sometimes aided by intuitions of the users
themselves, and theory-based judgments.

8

In generating an initial design, the designer can

address existing design guidelines for general prescrip-
tions of how to specify particular components of the

interface. For example, if the interface has a menu, the
guideline may prescribe that the alternatives should be
listed by order of frequency of use or cluster them
according to functional similarity, rather than displayed
alphabetically or randomly. Current design guidelines
(e.g., Woodson and Conover, 1966y Van Cott and Kinkade,
1972) include prescriptions about such topics as the
readability of type fonts, the brightness levels of
display screens, keyboards designed to fit hand shape and
function, and rules for making abbreviations and symbols

(see also Schneiderman, 1982; Smith, 1982).
Current guidelines, however, are more concerned with

perceptual and performance characteristics than with the
cognitive properties of the interaction. Thus, they
would prescribe appropriate type fonts, but not what
words these fonts should express to the user to suggest

the appropriate analogy for performing the task on the
system. There are several major caveats in the use of
design guidelines: the prescriptions or recomendations
contained may have been derived from situations or
research not applicable to the system being designed; new
or unaccounted for variables may interact in unanticipated
ways; and current guidelines do not always publish the
source of the recommendation, whether it was generated by

a controlled laboratory study or derived from the col-
lected wisdom of experience. Guidelines have to be
applied with care.

Though design guidelines have their flaws, they are

very useful in placing a particular new design in a
setting of conventional wisdom. Often the designer,

skilled in interacting with systems and cognizant of the
end tasks that are being supported in this design, cannot
foresee the difficulties the new user will have with the
system. Design guidelines provide suggestions to the
designer that will in many cases be better than those
based solely on intuition. (For a recent version of

guidelines, see Smith, 1984.)
The skills and knowledge of users themselves can be

used to advantage by incorporating users in the design
team. Users can provide some critical insights about how
they think of the task and thus the system (e.g., what
kinds of information should be accessible when, what the
screens should look like to mimic the original, a

noncomputer version of the task, what commands ought to

9

be called). They know the procedures and terminology
and, with proper support, can contribute to the design
and layout of forms and menus as well as act as critics
of the design. Gould and Lewis (1985) and Miller and Pew

(1981) provide examples of the involvement of users in
the design process. Other ways in which the sophisticated
user can be involved in the design of software systems
can be found below in the section on prototype testing
with users.

A third source of information about the original design

specification is psychological theories. Theory-based
judgments can constrain aspects of a design or suggest
promising areas of investigation. For example, theories
of color contrast can provide insight into the appro-
priateness of certain combinations used in screen high-
lighting or predict the readability of a new monochrome
display color. Because Fitt's Law accounted for movement
time for placing a cursor in a desired position with a
,ause and for placing the appropriate finger on a desired
key location, two conclusions follow: the invention of
faster pointing devices was unlikely to increase perfor-
mance and the design of keyboards with larger peripheral
key caps would increase the accuracy of keying (Card et
al., 1978; Card et al., 1980b).

Part of the difficulty in constructing a design and
analyzing its usability has to do with how the interface

is specified. Verbal descriptions of how a system works
are particularly unsuited for conveying the flow of an

interaction and the choices the user has at each point.
Several specification languages or formats have been

explored recently not only to serve as a way of conveying
to those who actually build or code the system what it
will do but also as a way of concretely specifying the
system to analyze its usability.

One way to specify the interaction is to use an inter-
active tool kit called a human-computer dialog management

* system. This system guides the definition of the inter-
action language that describes the actions of the user
and the system and the screen formats displayed at each
moment. Hartson et al. (1984), Jacob (1983), and

Wasserman (1982) -provide good examples of this kind of
interface definition.* A second format for displaying

*This is also a system that allows rapid embodiment of

the functioning of a new, developing system and thus is a
tool for rapid prototyping.

a"

10

what the system does at each state is a state transition
diagram, recently used as a description of a system's
workings in Kieras and Poison (1983).

DESIGN: FORMAL ANALYSIS OF THE INITIAL DESIGN

Once an initial design is specified, even if it is a
partial design, it can be subjected to several kinds of
scrutiny. The goal in this analysis stage is to make the
initial design as good as possible before it is made into
the prototype for user testing. Three methods aid in
this process: structured walk-throughs, decomposition,
and task-theoretic analytic models.

Structured walk-throughs involve construction of
tasks that a user carries out on a simulated system. The
user tries out the system by going through the task, step
by step, screen by screen, command by command. This can
be done with the design as specified in a number of
different formats, using an experimental sinulation of a
prototype or even with the experimenter presenting paper
and pencil figures of the screens, menus, and commands in

the appropriate sequence. The technique helps to identify
confusing, unclear, or incomplete instructions, illogical
or inefficient operations, unnatural or difficult proce-
dures, and procedural steps that may have been overlooked
because they were implicitly rather than explicitly
defined. Gould et al. (1983), Ramsey (1974), Ramey et
al. (1979), and Weinberg and Friedman (1984) provide
examples of the use of structured walk-throughs.

A second kind of formal analysis, called decomposition,
is proposed in Reitman et al. (1985). In this analysis,
the major components of the design are separated and
analyzed for their impact on cognition. The picture
displayed on the screen, for example, is assessed for how
it helps or hinders the user's ability to perceive mean-
ingful relationships or the system model. The comands
are assessed for their load on long-tern memory, how easy
they are to remember, and how confusable they are among
each other. For each component, a second design alterna-
tive is constructed to fit within the general guidelines
of usability. Then, through discussion and debate, the
design team decides which alternative of each component
is the better design. This method encourages careful
scrutiny of the proposed design and often encourages
designers to specify better interfaces before the first
prototype is built.

11

The third kind of formal techniques invoke task-
theoretic analytic models. These models provide
representations and analyses that assess, for example,
which parts of a metaphor aid performance and which do
not (Douglas and Moran, 1983) and how big the user's
short-term memory load is at each step of thp interaction
(Kieras and Polson, 1985). Prime examples of these tech-
niques include metaphor analysis (Carroll and Thomas,
19821 Carroll and Mack, 1982), assessment of mental
models (deKleer and Brown, 1983; delleer and Brown, in
press; and others in Gentner and Stevens, 1983), develop-
ment of production rule systems that represent the user's
knowledge of the task (Kieras and Polson, 1985), object/
action analysis (called "external/internal task mappingm
by Moran, 1983), the GC14S model (Card et al., 1980b;
1983), and formal grammar notation systems (Reisner,
1981a, 1984; Blesser and Foley, 1982).

These task analytic models are very useful tools.
However, none of them yet encompasses all of the cogni-
tive aspects of the interaction; each focuses on one or
more important aspects. These methods require training
to use and often take a long time. However, they all
have the advantage of being based on sound theories of
human behavior and can provide important analysis of
usability before any coding of software or running of
subjects is contemplated. There is a trade-off, then,
between time spent in analysis and time spent testing
users in the laboratory or the field. The hope embodied
in this approach is that as the science of user-interface
design grows, analytic tools will improve to the point of
making the actual user testing of designed systems merely
a last, short check of a good, finished design.

DESIGN: BUILDING A PROTOTYPE

Three methods provide simulations or quick versions of
significant aspects of a new system so it can be tried by

actual users. The methods are called facading, the
Wizard of Oz technique, and rapid prototyping.

Facading is the technique of quickly and inexpen-
sively building a simulation of the external appearance
(i.e., the Ofacade") of a system's interface. Its advan-
tages are that it is quick and relatively easy; the target
system's underlying complexity and/or final computational
capability is "finessed.0 To be maximally beneficial,
the facade must embody some level of the functional

"a£

12

capability of the final target system. It does not just
generate a series of static snapshots of the system but
rather includes the control structure, flow, or connectiv-
ity of the final system. Hanau and Lenorovitz (1980) and
Lenorovitz and Ramsey (1977) provide good examples of the
use of this technique.

A variant of the facading technique is the Wizard of
Oz technique. Instead of having the computer embody the
simulated system, hidden human operators intercept user
commands and provide output back to the user. Often the
technique is used to test a new interface language: the
hidden human operator intercepts the new commands, trans-
lates them into the real system commands, and, after
receiving output from the real computer system, retrans-
lates them back to the tested end-user (see Gould et al.,
1983; Gould and Boies, 1978; Ford, 1981; Kelley, 1983;
Wixon et al., 1983).

Rapid or fast prototyping are terms applied to the
more formalized building of a prototype in a hurry. The
speed of building a running system depends mainly on the
underlying supporting software, which makes the specific
prototype programmable from existing modules. Ideally,
the prototype programming language separates elements of
the dialog from the actual implementation software. For
example, the designer can specify the placement of the
command input line or the menu choices variously without
having to program new modules to execute these different
input formats. One of these, the "dialog management
system," is under development by Hartson and his
colleagues (Hartson et al., 1984; Yunten and Hartson,
1984); another system is described in Wasserman (1982)
and Wasserman and Shewmake (1982). Another project that
uses rapid prototyping methods is reported in Hayes et
al. (1981).

DESIGN: PROTOTYPE TESTING WITH USERS

When a prototype of some form has been built, actual
users are then brought in to use the system and report
their opinions about it. These tests can vary greatly in
how well controlled their designs are and how representa-
tive the set of tested users are of the final population
of users. Moreover, users are asked to perform several
kinds of tasks, some testing the normal, frequent tasks
that regular users will be expected to perform, others
testing those subtasks thought to be especially difficult

13

either for the system (e.g., those producing long system
response times) or for the user (e.g., the longest
sequence of commands for a particular type of task).
Prototype tests differ in what kinds of data are taken
from the user--times and errors, thinking aloud protocols,
or attitudes.

Experimental Designs

Field tests to evaluate systems are fashioned after
laboratory tests common in the academic field of experi-
mental psychology. In general, they require the compari-
son of at least two systems, systems that differ in only
one component or variable. Measures are designed to
reflect the performance attributable to the effects of
that variable, and subjects are chosen to be representa-
tive of the population of end users. Of particular impor-
tance are various techniques for controlling irrelevant
variables. For example, one must ensure that measures of
intelligence of the test subjects do not differ across
both conditions, affecting the results in addition to the
effects of the independent variables.

Often the rules of good experimental design are
violated in the interest of proceeding quickly. Subjects
who are different from the end users but more available
may be tested; comparisons may be made between two systems
that differ on more than one variable; measures may be
taken that are less sensitive than those that will
directly test why performance on one system is better or
worse than another; occasionally only one system is
tested and performance on it is measured against some
predetermined standard (e.g., a 10-minute rule for time
to learn a system). The closer the test is to good
experimental design, the more quickly the findings can
advance knowledge about the important aspects of good
human-computer interface. However, as is often the case
in development, the goal is not ultimate knowledge but
rather global assessment of the adequacy of a particular
interface or system. A compromise design procedure is
described in Reitman et al. (1984). The use of experi-
mental design is found in Ledgard et al. (1981), Reisner
et al. (1975), Reisner (1977, 1981b), and Williges and
Willlges (1982).

One variant from controlled experimental evaluation
that has been found useful in the development of inter-
faces is called quasi-experimental design. These

_ _mm unmmmmmnU•n mmm n mmm]m

14

designs involve capturing data at several time intervals,
typically of durations measured in weeks or months.
Sometime during the data capturing intervals, a change or
a modification of a system is introduced; the data being

captured are expected to reflect the impact of this
change. Some of these quasi-experimental designs allow
for comparisons with a control group. These designs are
hard to control, since the investigator must typically
take existing groups of users, giving one the change and
the other no change. Inherent differences in existing
groups is a major worry in evaluating the results. A
complete description of this technique can be found in
Cook and Campbell (1979); Koltum (1982) and Rice (1982)
provide good examples of this method.

Selection of Tasks to Perform

There are two reasons one has users try out a prototype
system: to identify points of difficulty for the user so
that those points can be redesigned and to measure stan-
dard use of the system, so that later changes in hardware
can be assessed or so those concerned with the staffing
of a large operation of users can determine how many
people will be needed. For the first purpose, tasks are
selected that stress the system and the user, generally
called critical incidents. For the second purpose, tasks
are selected to estimate basic characteristics of the
system's use, called benchmark tests.

In terms of critical incidents, the goal is to set
up situations or tasks that have been shown historically
to tax the user and/or the system and are sufficiently
important that they can make the difference between
success or failure on task or system performance. One
might, for example, require the user to access items
distant from what is being presented on the current
screen or to perform a long command sequence, to deter-
mine the loads of this part of the design on the user's
ability to imagine the stored information's underlying
structure or the mnemonic characteristics and gramatical
rules implied by the coamnd sequences. The goal is to
set up situations in which the data will tell the
designers something about the limits of human or system
performance. These tasks are illustrated in the work of
Al-Awar et al. (1981), Kelley and Chapanis (1982), and
Flanagan (1954).

15

In benchmark tests, the goals are quite different.
The designer wants to measure the likely performance
times and errors expected in normal use. The tasks are
not designed to tax the system or the user, but rather to
be representative of the kinds of frequent tasks the
system will normally support. Typically, tasks are
constructed to measure the expected amount of time it
takes a new user to learn a system, the amount of time it
takes the user to perform a set of predefined tasks, and
the amount of time it takes the system to respond to a
user's request. A good study that illustrates the use of
this method is that of the evaluation of eight text
editors by Roberts and Moran (1983). A study of data-
base interfaces using benchmarks was done by Mantei and
Cattell (1982).

Kinds of Data Collected

There are four major kinds of data collected in tests
of systems: the time it takes to perform a task, the
frequency and kinds of errors, the goals and intentions
of the users, and the attitude of the user.

The amount of time a task takes (either how long an
entire task takes or how long each successive keystroke
takes) reflects the time it takes the user to perceive
inputs, categorize and plan appropriate actions, and
execute proper responses. Error frequencies and types
reflect the difficulties users have with these processes
and often point to the cause of the error (whether the
error response is similar to one in a similar plan, was
generated from confusion with a similar screen, has a
label that sounds the same as another, etc.) A simple
analysis of users' times and errors is found in Reisner
et al. (1975) and Reisner (1977). A comprehensive
analysis of users' times is found in Card et al. (1980b,
1983). Other uses of times and errors can be found in
Boies (1974), Rosson (1984), Sheppard and Kruesi (1981),
and Thomas and Gould (1975).

A more thorough, complicated kind of data to collect
during evaluation involves the user's thinking aloud
while performing the task. Typically the user is video-
and sound-recorded while he or she is performing the
tasks. The recording captures what is said and done,
what is displayed on the screen, what sections of the
documentation are being examined, what parts of the task

instructions the user is reviewing, etc. The most

- '

16

complete protocols ask the subjects to verbalize their
intentions, what their goals are, and what current plans
they have about reaching their goals. Other behavior is
directly observablel thoughts and plans typically are
not. This method has been used by Mack et al. (1983),
Carroll and Mack (1982), and Card et al. (1980a) in their
studies of skilled text editing. More complete descrip-
tions of the technique and its advantages and disadvan-
tages can be found in Lewis (1982), Olson et al. (1984),
and Ericsson and Simon (1980).

A third kind of data collected in evaluation sessions
is the users' opinions about the system's ease of use
and functionality. A common instrument used to scale
users' global attitudes about the system is the evalua-
tion component of Osgood et al.'s (1957) Semantic
Differential (see Good, 1982, for an example of its
use). Questionnaires and interviews also tap users'
reactions to particular components of the system. One
problem with users' reports, however, is that they are
typically distorted by their experience with other,
similar systems. Or a user may have difficulty separating
components of the system such; for example, a user who
has a very difficult time using a system may report that
he or she likes it a great deal, recognizing how much
easier it is to perform the task on a computer compared
with previous manual methods.

Redesign

Typically as the prototype of the original design is
tested, errors are found and revisions suggested. The
methods appropriate to the initial design are appropriate
also at the stage of redesign. This part of the design
process iterates through "fixing" and "testingn until
either an acceptable level of performance is reached or
the deadline for developing the system is reached.

IMPLEMENTATION: MONITORING CONTINUED PERFORMANCE

Just as data were collected in the original conception
and analysis phase of product development, data are col-
lected on the system as implemented. At this stage,
activity analyses, diaries, logging and metering, and
questionnaires and interviews are all appropriate methods
for assessing whether the product as designed is perform-

30

17

ing as predicted in the final environment. If problems
are found in the field, either small corrections are made
in the code (e.g., changing what a command is called is
easy to change in the code but can have an enormous
impact on the ease of use), or a redesign is called for,
sending the product design process back to prototype
development or fully back to the top of the cycle.

____ __

'4. uuu mm H ii

OTHER METHODS

Three additional methods are worth mentioning, though

they do not fit neatly into the scheme above. They
include the dialog specification procedure, experimental
programming, and case studies.

The dialog specification method is a global procedure
that cuts across the first several steps outlined above.
It is a procedure that prescribes a method for developing
an interactive dialog with a system and sets a design
standard. The method includes task analysis and flow
charting of user activities as well as standard means of
communicating the specific design requirements to the
programmer. The design standard describes acceptable
screen layouts, interactive devices and how they are to
be used, acceptable command language syntax, etc., down
to a level of detail compatible with the specificity of
the range of applications to which it is intended to
apply. For example, if all designs concerned telephone
management applications, the specification would deal
only with the range of tasks in this domain. These
specifications are built from human factors principles as
well as accumulated data from user testing. Pew et al.
(1979) describe this method more fully.

Experimental programing is similarly a more global
method for designing systems and interfaces. It is a
more flowing, adaptive technique involving users,
designers, and programmers (sometimes all in the same
person). Someone builds a prototype of a new system with
some fraction of the functionality and some fraction of
the user interface in place. This prototype is then used
by a variety of prograrner/users who generate suggestions
for new features and suggestions for revisions for exist-
ing functions. As many suggestions as possible are
incorporated into the prototype the good features

18

19

survive, poor features disappear. Occasionally, when
new features are incompatible with the old, a competing
prototype is built. Sometimes someone merges the most
popular ideas from both. This method is very informal.
The only rules for its application are that everyone's
opinion get a fair hearing and that anyone in the costun-
ity can implement a change.

This method allows for progressively better understand-
ing of the application as well as the computation and
interface requirements. Its weakness lies in its casual
nature and that it relies on the opinion of users, most
of whom are programnrs; its strength lies in its explora-
tory, evolutionary, democratic nature. One well-known
product that benefited from experimental programing is
the DMACS text editor (Stallman, 1980), which pioneered
such concepts as user-customization, on-line documenta-
tion, and a particular comand style. In addition,
Teitelman (1972) used experimental programing to develop
the concept called DWIM (*Do What I Mean"), which included
a set of facilities that automatically corrected
predictable errors.

A third global technique goes under the rubric of case
studies. Case studies involve observation and analysis
of a singe user, group, or project. The information
collected may range from informal, subjective impressions
to detailed quantitative data. Because case studies
involve no comparison or control group, they are not very
useful in inferring causality. As a result they are not
appropriate for building a data base of basic research
results from which to construct theories and principles.
They can, however, be extremely useful for gaining
insights when one is first investigating an area of
interest and for providing concrete demonstrations of the
use of new methods and tools.

An example of a case study in which new insights were
gained about a domain involved the use of the Ada system.
The purpose of the study was to understand the problems
that are likely to arise when the system is first intro-
duced into an organization (Bailey et al., 1982). A
second case study involved a demonstration of new methods
for designing systems to be embedded in special purpose
hardware, such as airplanes and tanks (Britton et al.,
1981). The documentation and related products produced
by this case study provide examples that others may use
in trying to apply the methods to their own software
projects. Brooks (1975) documents the use of a case
study in a large computer programing project. And, the

20

case study by Baker (1972) was extremely influential in
leading the structured programming revolution. Others
include Gould and Doios (1978, 1983, 1964), and Heninger
(1960).

ADVANCES MID SUCCESSES

Over the last 10 years, it has become clear that

research on the issues surrounding human-computer
interaction is worth doing. The design of the human-
computer interface makes a marked difference in users'
performance. Software products exist that embody well-
designed interfaces derived from human factors input:
the Xerox STAR, Apple LISA, and MACINTOSH work stations

and the Rolm and IBM mail system are examples. In
addition, major changes in the design of the telephone

directory assistance system, as well as original designs
of telecommunication control devices, were a result of

human factors studies.
Human factors research has also shown the usefulness

of some important generic display and control devices:
the partitioning of screens into windows, icons for the

control of operations and the display of objects, better
help messages, and better defined response and function

keys. In addition, more is known about users' limitations
and adaptability.

Human factors design is also influencing documentation

and training for software use (Felker, 1980). Because
software is more available to a variety of users, there
is an increased awareness by the public of the need to
make software easy to learn and use.

21

m II II _ I

FUTURE METHODS

Although we have catalogued a variety of methods to be
used in the software design and research process, some
needs for information are still unmet. The research

needs fall roughly into three categories of needs: new
theories, new representations, and new data collection
and analysis methods.

THEORIES

Three particular kinds of theories are seen as needed.
Automation theories would tell us what should be auto-

mated and what should be assigned to the human processor.
Such theories would also prescribe an appropriate mix of
automation and human control. Some seeds of theories are
suggested in the field of supervisory control and in
office analysis techniques, but a more explicit theory is
needed to prescribe the best mix of human and computer
processing.

Theories of individual differences would tell us
about the different kinds of computer support required
and desired by different user populations. Special
continuing interest focuses on the differences between

naive or casual users and expert or dedicated users.
Theories of standardization would tell us about

which aspects of a system should be standardized for all

users (as in the basic control devices in an automobile)
and which can be customized for adaptation by and for

specific users.
In addition, two taxonomies are needed: a character-

ization of the kinds of tasks for which software can be
built (so that design prescriptions can be tied, perhaps,
to particular classes of tasks) and a characterization of

22

I

23

the kinds of users that use software applications (related
to the theories of individual differences described
above). The partial taxonomy of human-computer interface
tasks advanced by Lenorovitz et al. (1984) provides a
baseline for this effort.

REPRESENTATION

Many of our analyses outside the testing of a working
system with real end users require some specification of
what the system can do, what the user knows about how the
system works, and how the user conceives of the task.
There is thus a need for better representational schemes
than those now being used. One such scheme would describe
a complex system so that documentation and training could
be better designed. Another would represent exactly how
a system works--the interface, dialog, communication, or
transaction--so that the design could be both analyzed
for its fit to users' needs and capabilities and conveyed
to those who have to program it.

We need techniques for inferring what a user currently
understands of a system, a method for extracting the
appropriate information from the user and for displaying
the resulting understanding or *mental model." These
techniques are as useful in basic research on the per-
formance of complex tasks as they are in the applied
design process. (A report of the Committee on Human
Factors' workshop on mental odels in the use of
information systems is scheduled for publication in 1985.)

DATA COLLECTION, MEASURES, AND ANALYSES

Although we have a rich variety of measures to collect
from users interacting with a system, we have no direct
measures of the user's affect nor do we collect any of
the neurophysiological responses that accompany intense
work, frustration, and satisfaction. In addition, there
is a need for better hardware tools for collecting logging
and metering information without slowing the system that
the user normally interacts with. More specific methods
are needed for analyzing the mountain of data that comes
from protocol analysis, not only in deducing how the user
is satisfying his or her task goals and subgoals, but
also in deducing ongoing memory and perceptual loads on
the user and how the user compensates for them in per-

24

forming the task. Our task analysis methods need to be
expanded to include more cognitive aspects of the user's
performance, his or her memory, language, and perceptual
aspects.

Research methods considered most likely to produce
high payoff in the near future include:

o Representations of the users' understanding of a
system;

o Representations of a dialog to convey the design to
prograer 5l

o More comprehensive task analyses that include
memory, perceptual, and language considerations as
well as timing and error predictions; and

o Hardware advances that allow the collection of
logging and metering data for tapping the current
use of a system.

--V.

CONCLUS ION

The field of software human factors is rising in its
research needs faster than the scientific data base is
growing. Additional basic research is clearly needed.

Educational programs are now traintng future researchers
and practitioners in this field. Data in laboratories

and industry need to be collected more systematically and
disseminated more widely. As a compendium of current

methods, their descriptions and evaluations, and refer-
ences to existing literature that use these methods, this
report should then help coalesce the field and move it
toward fruitful work in the future.

25

t.J

W S

Al-Awar, J., Chapanis, A., and Ford, W.R.
1981 Tutorials for the first time computer user.

IEZE Transactions in Professional Communication.
P:C-24 (1):=30-'37.

Bailey, J., asili, V., Gannon, J., Katz, Z., Iruesi, E.,
Sheppard, S., and Zelkowitz, M.

1982 Monitoring an Ada Software Development
Project. Ada Letters 2(July-August)t58-61.

Baker, F.T.
1972 Chief programmers team management of production

programming. IN Systems Journal 11:56-73.
Blesser, T., and Foley, J.D.

1982 Towards specifying and evaluating the human
factors of user-computer interface. Pp. 309-314

in Proceedings of the Human Factors of Computing
Systems. New York: Association of Computing
machinery.

Boies, S.J.
1974 User behavior on an interactive computer

system. IBN Systems Journal 13:2-18.
Britton, K.H., Parker, R.A., and Parnas, D.L.

1981 A procedure for designing abstract interfaces
for device interface modules. Proceedings of

the 5th International Conference on Software
Engineering. Orlando, Fla: IZ33.

Brooks, F.P.
1975 The Mythical Man month: Essays on Software

Engineering. Reading, Mass.: Addison-Wesley.
Bullen, C.V., and Bennett, J.L.

1983 Office Workstation Use by Administrative
Managers and Professionals. IE Research
Report i3 3890.

26

| |

27

Bullen, C.V., Bennett, J.L., and Carlson, E.D.
1982 A case study in office workstation use. IBM

Systems Journal 21(3):351-369.
Card, S.K., English, W.K., and Burr, B.J.

1978 Evaluation of mouse, rate-controlled isometric
joystick, stop keys, and text keys for text
selection on a CRT. Ergonomics 21:601-631.

Card, S., Moran, T., and Newell, A.
1980a Computer text-editing: an information

processing analysis of a routine cognitive
skill. Cognitive Psychology 12:32-74.

1980b The keystroke level model for user performance
with interactive systems. Communications of
the ACM 23:396-410.

1983 The Psychology of Human Computer Interaction.
Hillsdale, N.J.: Lawrence Erlbaum.

Carroll, J.M., and Mack, R.L.
1982 Metaphor, computing systems and active

learning. IBM Research Report RC 9636.
Carroll, J.M., and Thomas, J.C.

1982 Metaphor and the cognitive representation of
computing systems. IEEE Transactions on
Systems, Man, and Cybernetics 12:107-116.

Cook, T.D., and Campbell, D.T.
1979 Quasi-Experimentation: Design and Analysis

Issues for Field Settings. Chicago: Rand
McNally.

deKleer, J., and Brown, J.S.
1983 Assumptions and ambiguities in mechanistic

mental models. In D. Gentner and A.S. Stevens,
eds., Mental Models. Hillsdale, N.J.:
Lawrence Erlbaum.

in A qualitative physics based on confluences. In

press B. Moore and J. Hobbs, eds., Formal Models of
the Common-Sense World. Norwood, N.H.: Ablex.

Douglas, S.A., and Moran, T.P.
1983 Learning text editing semantics by analogy.

CHI-83. Pp. 207-211 in Proceedings of the
Conference on Human Factors in Computing
Systems. New York: Association of Computing
Machinery.

Ericsson, K.A., and Simon, H.A.
1980 Verbal reports as data. Psychological Review

3:215-251.
Felker, D.C., ed.

1980 Document Design: A Review of the Relevant
Research. American Institute for Research.
Technical Report 75002-4/80, Washington, D.C.

_ __ _ _ _.. aI I -
Eqe

28

Flanagan, John C.
1954 Critical incident technique. Psychological

Bulletin 51:327-358.
Ford, William R.

1981 Natural Language Processing by Computer--A New
Approach. Ph.D. dissertation. Department of
Psychology, Johns Hopkins University.

Gentner, D., and Stevens, A.L. eds.
1983 Mental Models. Hillsdale, N.J.: Lawrence

Erlbaum.
Good, M.

1982 An ease of use evaluation of an integrated
document processing system. CHI 82. Pp.
142-147 in Proceedings of Human Factors in
Computing Systems. New York: Association of
Computing Machinery.

Goodwin, N.C.
1982 Effect of interface design on usability of

message handling systems. Pp. 69-73 in
Proceedings of the Human Factors Society. 26th
annual meeting, Seattle, Wash.

Gould, J.D., and Boies, S.J.
1978 Writing, dictating, and speaking letters.

Science 201:1145-1147.
1983 Human factors challenges in creating a principal

support system--the speech filing approach. AC1
Transactions on Office Information Systems
1(4) :273-298.

1984 Speech filing--an office system for principals.
IBM Systems Journal 23(l):65-81.

Gould, J.D., and Lewis, C.
1985 Designing for usability of key principles and

what designers think. Communications of the
ACl 28:300-311. New York: Association of
Computing Machinery.

Gould, J.D., Conti, John, and Hovanyecz, Todd
1983 Composing letters with a simulated listening

typewriter. Communications of the ACK
26:295-308.

Hanau, P.R., and Lnorovitz, D.R.
1980 A prototyping and simulation approach to

interactive computer system design. Pp. 23-25
in Proceedings of the 17th Design Automation
Conference, Minneapolis, Minn.

_____ ____d

29

Hartley, C., Brecht, M., Pagersy, P., Weeks, G.,
Chapanis, A., and Hoecker, D.

1977 Subjective estimates of work tasks by office
workers. Journal of Occupational P;ychology
50:23-36.

Hartson, H.R., Johnson, D.H., and Ehrich, R.W.
1984 A human-computer dialogue management system.

Pp. 57-61 in Proceedings of INTERACT o84,
London. Amsterdam: Elsevier Science
Publications.

Hayes, P., Ball, E., and Reddy, R.
1981 Breaking the man-machine communication barrier.

Computer 14(3) :19-30.
Heninger, K. L.

1980 Specifying software requirements for complex
systems: new techniques and their application.
IEEE Transactions on Software Engineering.
SE-6(l):2-13.

Hoecker, D.G., and Pew, R.W.
1980 User Input to the Design and Evaluation of

Computer-Assisted Service Delivery. Report
#4358. Cambridge, Mass.: Bolt Beranek and
Newman Inc.

Jacob, R.J.K.
1983 Using formal specifications in the design of

the human-computer interface. Communications
of the Association of Computing Machinery
26(4):259-270.

Johnson-Laird, A.
1982 Most software more complicated than needed.

Software News 2(4):47.
Kelley, J.F.

1983 Natural Language and Computers: Six Empirical
Steps for Writing an Easy-to-Use-Computer
Application. Ph.D. dissertation, Department of
Psychology, Johns Hopkins University.

Kelley, J.F., and Chapanis, A.
1982 How professional persons keep their calendars:

implications for computerization. Journal of
Occupational Psychology 55:241-256.

Kieras, D.E., and Polson, P.A.
1983 A generalized transition network representation

for interactive systems. CHI-83. Pp. 103-106
in Proceedings of the Conference on Human
Factors in Computing Systems. New York:
Association of Computing Machinery.

I
-4.

30

1985 An approach to formal analysis of user complex-
ity. International Journal of Man-Machine
Interaction. In press.

Koltum, P.L.
1982 Evaluation of a Teaching Approach for Introduc-

tory Computer Programming. Ph.D. dissertation,
Department of Computer Sciences, University of
North Carolina.

Ledgard, H., Singer, A., and Whiteside, J.A.
1981 Directions in Human Factors for Interactive

Systems. New York: Springer-Verlag.
Lenorovitz, D.R., and Ramsey, H.R.

1977 A dialogue simulation tool for use in design of
interactive computer systems. Pp. 95-99 in
Proceedings of the Human Factors Society Annual
Meeting. Santa Monica, Calif: Human Factors
Society.

Lenorovitz, D.R., Phillips, M.D., Ardrey, R.S., and
Kloster, G.V.

1984 A taxonomic approach to characterizing human-
computer interfaces. In Human-Computer Inter-
action, G. Salvendy, ed., Proceedings of the
First USA-Japan Conference on Human-Computer
Interaction. Amsterdam: Elsevier Science
Publications.

Lewis, C.
1982 Using the "thinking aloud" method in cognitive

interface design. IBM Research Report RC
#9265.

Mack, R.L., Lewis, C. and Carroll, J.M.
1983 Learning to use word processors: problems and

prospects. ACM Transactions on Office
Information Systems 1:254-271.

Mantei, M., and Cattell, R.G.G.
1982 A study of entity-based data base interfaces.

ACM SIGCHI Bulletin 14(1).
Mantei, M., and Haskell, N.

1983 Autobiography of a first-time discretionary
microcomputer user. CHI 83. Proceedings of
the Conference on Human Factors in Computing
Svetem. New York: Association of Computing
Machinery.

Mantei, M., and Smelcer, J.B.
1984 Listing of doctoral programs in human-computer

interaction. ACM SIGCHI Bulletin 16(2):12-40.

31

Miller, D.C., and Pew, R.W.
1981 Exploiting user involvement in interactive

system development. Pp. 401-405 in Proceedings
of the Human Factors Society Annual Meeting.
Santa Monica, Calif: Human Factors Society.

Moran, T.P.
1983 Getting into a system: external-internal task

mapping analysis. CHI-83. Pp. 45-49 in
Proceedings of the Conference on Human Factors
in Computing Systems. New York: Association
of Computing Machinery.

Olson, G.M., Duffy, S.A., and Mack, R.L.
1984 Thinking-out-loud as a method for studying

real-time comprehension processes. Pp. 253-286
in D.E. Kieras and M.A. Just, eds., New Methods
in Reading Comprehension. Hillsdale, N.J.:
Lawrence Erlbaum.

Osgood, C.E., Suci, G.J., and Tannenbaum, P.H.
1957 The Measurement of Meaning. Champaign-Urbana:

University of Illinois Press.
Parks, M.

1983 Productivity tools enable users to obtain
better (not more) code. Software News
3(2):22-23.

Pew, R.W., Rollins, A.M., and Williams, G.A.
1979 Generic Man-Computer Dialogue Specification:

An Alternative to Dialogue Specialists. Bolt
Beranek and Newman Inc., Cambridge, Mass.

Polson, P., and Kieras, D.E.
1985 A quantitative model of learning and

performance of text editing knowledge. CHI-85.
In Proceedings of the Conference on Human
Factors in Computing Systems. New York:
Association of Computing Machinery (in press.)

Ramsey, H.R.
1974 Plans: human factors in the design of a

computer programming language. Pp. 39-41 in
Proceedings of the Human Factors Society Annual
Meeting. Santa Monica, Calif.: Human Factors
Society.

Ramsey, H.R., Atwood, M.E., and Willoughby, J.K.
1979 Paper simulation techniques in user require-

ments analysis for interactive computer systems.
Pp. 64-68 in Proceedings of the Human Factors
Society Annual Meeting. Santa Monica, Calif.:
Human Factors Society.

I I I I I

32

Reisner, P.
1977 Use of psychological experimentation as an aid

to development of a query language. IEEE
Transactions on Software Engineering
63-3(3) :218-229.

1981a Formal grammar and human factors design of an
interactive graphics system. IEEE Transactions
on Software Engineering SE-7(2) t229-240.

1981b Human factors of data-base query languages: a
survey and assessment. Computing Surveys
13:13-31.

1984 Formal graumar as a tool for analyzing ease of
use: some fundamental concepts. In J. Thomas
and H. Schneider, eds., Human Factors in
Computer Systems. Norwood, N.H.: Ablex.

Reisner, P., Boyce, R.F., and Chamberlain, D.D.
1975 Human factors evaluation of two data base query

languages: SQUARE and SEQUEL. Pp. 447-452 in
Proceedings of the National Computer Conference.
Arlington, Va.: American Federation of
Information Processing Societies Press.

Reitman, J.S., Whitten, W.B.,II, and Gruenenfelder, T.M.
1985 A general user interface for entering and

changing tree structures, nested menus, and
decision trees. In Proceedings of NYU
Symposium on User Interface Design. Norwood,
N.H.: Ablex.

Rice, Ronald E.
1982 Human Commnication Networking in a Telecon-

ferencing Environment. Ph.D. dissertation,
Department of Computer Sciences, Stanford
University.

Roberts, Teresa L., and Moran, Thomas P.
1983 The evaluation of text editors: methodology

and empirical results. Communications of the
ACM 26:265-283.

Rosson, Mary Beth
1983 Patterns of experience in text editing.

CHI-83. Pp. 171-175 in Proceedings of the
Conference on Human Factors in Cgqting
Systems. New York: Association of Computing
mach inery.

1984 Effects of experience on learning, using, and
evaluating a text editor. Human Factors
26:463-475.

I _ _ _

33

Sheppard, S.B., and Kruesi, E.
1981 The effects of the symbology and spatial

arrangement of software specifications in a
coding task. General Electric Company
Information Systems Programs Report
TR-81-388200-3. Arlington, Va.: General
Electric.

Shneiderman, B.
1982 Systems message design: guidelines and

experimental results. In A. Badre and B.
Scheiderman, eds., Directions in Human-Computer
Interaction. Norwood, N.H.: Ablex.

Smith, S.L.
1982 User-system interface design for computer-based

information systems. Mitre Corporation Report
ESD-TR-82-132. Bedford, Mass.: Mitre
Corporation.

Smith, S.L., and Nosier, J.N.
1984 Design guidelines for user-system interface

software. Mitre Corporation Report
ESD-TR-84-190. Bedford, Mass.: Mitre
Corporation.

Stallman, R.M.
1980 EMACS Manual for ITS users. Al Lab Memo 554.

Masschusetts Institute of Technology,
Cambridge, Mass.

Sullivan, M.A., and Chapanis, A.
1983 Human factoring: a text editor manual.

Behaviour and Information Technology 2:113-125.
Teitelman, W.

1972 Do what I mean: the programmer' s assistant.
Computers and Automation 21(4)8-11.

Thomas, J.C., and Gould, J.D.
1975 A psychological study of query by example. In

Proceedings of the National Computer
Conference. Arlington, Va.: American
Federation of Information Processing Societies
Press.

Van Cott, H., and Kinkade, R.G., eds.
1972 Human Engineering Guide to Equipment Design.

Prepared by the American Institutes for
Research for the U.S. Department of Defense.
Available from the U.S. Government Printing
Office, Washington, D.C.: U.S. Department of
Defense.

34

Wasserman, Anthony I.
1982 The user software engineering methodology: an

overview. Pp. 591-628 in A.A. Verrijn-Stuart,
ed., Information Syatem Design Methodologies.
Amsterdam, North Holland Press.

Wasserman, Anthony I., and Shewmake, David T.
1982 Rapid prototyping of interactive information

systems. SOftware Bngineering Notes
7(5) :171-180.

Whiteside, J., Archer, N., Nixon, D., Good, N.
1982 How do people really use text editors? Pp.

29-40 in Proceedings of the SIGOA Conference on
Office Information Systems, Philadelphia.

Wienberg, G.M., and Friedman, D.P.
1984 Reviews, walk-throughs, and inspections. IEEE

Transactions on Software Engineering S3-10(1).
Williges, R.C., and Williges, B.H.

1982 Modeling the human operator in computer based
data entry. Human Factors 24:285-299.

Wixon, D.R., Whitesidel J.A., Goode M.D., and Jones, J.R.
1983 Building a user defined interface. CHI-83.

Pp. 24-27 in Proceedings of the Conference on
Human Factors in Computing Systems. New York:
Association of Coqmuting Machinery.

Woodson, N.E., and Conover, D.N.
1966 Engineering Guide for Equipment Designers. 2nd

ed. Berkeley: University of California Press.
Yunten, T., and Hartson, H.R.

1984 A Supervisory Methodology and Notation
(SUPERIAN). In H.R. Hartson, ed, Advances In
Human-Computer Interaction. Norwood, N.H.:
Ablex.

Uncjagsif ied
SECURITY CLASSIFICATION or TIS PAGE (Whomp o fne .Io

REPORT DOCUMENTATION PAGE BEFORE__COMPLETINGFORM

0 REOR UMBE. GOVT ACCESSION NO: -5 macipoeNTS CATALOG wumm

4 TITLE (OnE S..seeu.j S. TYPE Of REPORT A PERIOD COVERED
Methods for Designing Software to Fit Human Needs Technical Report
and Capabilities: Proceedings of the Workshop on
Software Human Factors II. PERFORMING ORG. REPORT NUMBER

IAU TWOR(c) 9. CONTRACT ON GRANT NUNSERW.)

Nancy S. Anderson and Judith Reitman Olson, eds. N00014-85-C,-0093

SPERFORmING ORGANIZATION HNK AND ADDRESS 10. PROGRAM ELEM1NT. OSjtCT, TASN
Committee on Human Factors ARASWOKU I Ita
National Research Council Work Unit No. NR196-167
Washington, D. C. 20418

1 I. CONTROLLING OFFICE NAME AN6D ADDRESS OZ. REPORT DATE

Engineering Psychology Program
Office of Naval Research ,s. NUNER. AGES
Arlington, VA 22217
1* MONIT ORING AGENCY NAME & ADORESSlIf diIfea t bo Cmeminge Offic) Il. SECURITY CLASS. 0.1 MlS .. PON)

Unclassified

I$&. DECLASSIFICATION, DOWNGRADING
SCHEDULE

.6. DISTRIWUTION STATEMENT Wc thi. R.Port)

Approved for Public Release: Distribution Unlimited

I?. DISTRISUTION iTATEMENT (of 0. obekwa gglw.E if Block 20, ildiffferavl ite Reot)

III. SUfPPLEMEN~TARY NOTES

The Committee on Human Factors is sponsored by the Air Force Office of
Scientific Research, the Army Research Institute, the National Aeronautics and.
Space Administration, the National Science Foundation, and the Office of Naval
Research.
Is. KEY WORDS (Cowhte. on .eow' c 1I'C@W m.oeer ow~f lAnlty boo" Rtm&w)

information systems Committee on Human Factors
computer software design
software human factors methods
human-computer interaction software design methods

20. ABSRACT (Conthw. on .w W&E II ncceee mod Idinmt' IV 1.6* onobco
Computer software is usually developed with little or no user input into the

design process frequently resulting in sophisticated computer programs thatare difficult to use or require extensive training programs. The workshop was
convened to identify and describe methods that software designers can employ
that incorporate the user into the design team. The result is more effective
use and evaluation of the software programs, improved manuals, and reduced
training time.

S/NM 0102- LF 014- 6601 gcaw5UM9 VmPW ~.Oe~

nCV~~rV M" 1%we ass o'"

Selected Publications of the Committee on Human Factors

Research Needs for Human Factors (1983)
Research Needs on the Interaction Between Information Systems and Their

Users (1984)
Research Issues in Simulator Sickness (1984)
Research and Modeling of Supervisory Control Behavior (1984)

